Image Analysis

Rasmus R. Paulsen Tim B. Dyrby DTU Compute

rapa@dtu.dk

http://courses.compute.dtu.dk/02502

-3-

Lecture 12 – Statistical models of shape and appearance

- 20

Today's Learning Objectives

- Describe the concept of shape models
- Define the shape of an object using landmarks
- Describe point correspondence
- Describe and use the vector representation of a shape
- Describe how a shape can be seen as a point in high-dimensional space
- Explain how shapes can be aligned
- Describe how principal component analysis can be used to model shape variation
- Explain the similarity between Eigenfaces and shape and appearance models

A typical scenario

- Doctor X believes that he can "see" on a hand X-ray if the patient is in risk of arthritis!
- Specifically Doctor X is sure that the shape of the joints is an estimator for arthritis!

Can we verify that?

- 3-

Scenario II

Corpus Callosum

- MR images have been captured of a large group of people
- Cognitive abilities measured as well
- Is there a correlation between how the brain looks and how we behave?
- Does the shape of corpus callosum tell us something?

Scenario II

Corpus Callosum

We can get the MR slice with the corpus callosum from all the patients

Scenario III

- An experienced hearing aid fitter has seen a lot of ears!
- Some hearing aid users are very difficult to fit. Why?
- Large variation in the shape of ears
- Ear canals change shape when people chews
- Is it possible to learn about the shape and use it?

Shape Analysis

600 MR scans and behavioural data

- What can we learn from shape?
- What can we use it for?
- How do we do it?

- 34

What is shape?

- How do we define the shape of this hand?
- What is the shape difference between the two hands?

Shape definition

- Shape is defined using landmarks
 Blaced by an expert
 - Placed by an expert
- In this case the outer contour of the hand
- Just one of many ways!

Shape definition

Shape is all geometrical information that remains when location, scale, and rotational effects are removed

Shape definition

Shape is all geometrical information that remains when location, scale, and rotational effects are removed

12 DTU Compute, Technical University of Denmark

Landmarks and point correspondence

Landmarks are placed on the same place on all shapes in the training set

Shape as a vector

- The shape is represented as an array of (x,y) coordinates
- Trick number one! All coordinates are put into one vector!
- n=56 points
 - Vector with 112 elements!

$$\mathbf{x} = [x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n]^T$$

- 3-

Shapes in high-dimensional space

 $\mathbf{x} = [x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n]^T$

- One hand is now described using one vector
- A vector can also be seen as a point in space!

Coordinates in space

- On hand is now described using one vector
- A vector can also be seen as a coordinate in space!
- Not 2D space, not 3D space, not 4D space...
- 112 Dimensional Space!
- A hand has a position in this space!

DTU Compute, Technical University of Denmark

17

Hands in Space

- A hand has a position in space!
- Another hand appears
 - in the same space
 - different position = different shape
- All hands have a place in this space!

Shape Analysis

Shape analysis

- Similar shapes are placed on "planes" in the shape-space
- Also called a manifold

- 34

20

Shape alignment

40 training images of hands

- 56 landmarks on each
- Placed in random location (translation+rotation)

Shape alignment Before alignment

Landmarks from all hands

Needs alignment!

- 3-

What is alignment?

Average shape

Group wise registration

- Not one-to-one
- All to the average shape

$$ar{\mathbf{x}} = rac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$
 $ar{\mathbf{x}} = [ar{x}_1, ar{x}_2, \dots, ar{x}_n, ar{y}_1, ar{y}_2, \dots, ar{y}_n]^T$

But hey! We do not have an average shape?

- 3-

Procrustes Analysis (alignment)

DTU

23 DTU Compute, Technical University of Denmark

Shape #2

Image Analysis

Landmark based registration

"Average shape" Registration

Shape #2 DTU Compute, Technical University of Denmark

- Shape #2 is transformed to fit the average shape
 - Translation
 - Rotation
 - Scaling
 - = Similarity Transform
- Result
 - Shape #2 is placed on top of the average shape

Procrustes Analysis

- 1. Average shape is set to shape #1
- 2. Register all shapes to the average shape
 - Landmark based registration
- **3.** Recompute the average shape
- 4. If average shape changed return to step 2.

Aligned shapes – what now

Individual landmark variation

- Over the training set
- What shape is the variation?

- 3-

Principal Component Analysis (PCA)

PCA

- Main axis in data
- Eigenvectors
- Eigenvalues
- Size of Eigenvalues describe explained variance

- 34

Principal Component Analysis (PCA)

- We throw away the noise dimensions
- Points projected to the line

- 34

Principal Component Analysis (PCA)

- We throw away the noise dimensions
- Points projected to the line
- A point can now be described by one parameter *t*
- We have reduced the number of dimensions

How many dimensions should we keep?

Plot the Eigenvalues
 Explains how *important* each dimension is

Cut away noise dimensions

- 34

Aligned shapes – what now

Individual landmark variation

- Over the training set
- What shape is the variation?

- 3-

PCA Analysis

Landmark #14 Landmark #22

- PCA analysis on individual landmarks
- Describes the major direction of variation
- Landmarks are correlated!
- The movement over the shape is connected
- Return to shape space

PCA in shape space

- Instead of doing PCA on 2D points we do it on 112D points
- Examine if our 40 shapes is lying on a plane in 112D space
- We find the directions that spans the maximum variation in shape space

Start by computing the shape average

$$\bar{\mathbf{x}} = \frac{1}{s} \sum_{i=1}^{s} \mathbf{x}_i$$

Since we do this on the aligned shapes – this is the Procrustes average

- 3-

Do the eigenvector analysis

Computing the covariance of the shape data

Visualizing variation

- 3-

37 DTU Compute, Technical University of Denmark

-9-1

Results of Shape Analysis

Visualisation of the major variation of the shape over a population

Hearing Aid Design

- Main variation of the shape of the ear canal
- Found using principal component analysis
- First mode of variation
- 7 modes explain 95% of the total variation

Modelling shape and appearance

- A model that can both model the shape of an object and the appearance (the texture)
- **Texture:** The pattern of intensities (or colors) across an image patch

Back to lecture 3: Eigenfaces

42 DTU Compute, Technical University of Denmark

Face data

38 face images

- 168 x 192 grayscale
- Aligned
 - The anatomy is placed "in the same position in all image"
 - Same illumination conditions on the images we use

The Extended Yale Face Database B

- 3-

Analyzing the deviation from the mean face

We want to do the principal component analysis on the *deviations from the average face*

Visualizing the PCA faces Main deviations from the average face

First PC – 40% of variation

Second PC – 8% of variation

A tool to see major variations – brow lifting

- 3-

Eigenfaces: Modelling texture

The modelling of the pure appearance
Without removing variation in shape
No *decoupling* of shape and appearance

Decoupling shape and texture

- Warp each face to average shape using the landmarks
 Non-linear geometrical transformation
 Sample the texture from
 - Sample the texture from the warped face

Eigenfaces on warped faces

 Same PCA modelling as in the Eigenfaces approach
 Just slightly different notation

$$\mathbf{g} = \bar{\mathbf{g}} + \mathbf{P}_g \mathbf{b}_g$$

49

Combined shape and appearance model

Figure 5.2: First two modes of shape variation $(\pm 3 \text{ sd})$

Figure 5.3: First two modes of grey-level variation $(\pm 3 \text{ sd})$

- 20

Course evaluation

Very important to get your feedback on the course

Please do it now – log into DTU Inside and fill in the evaluation

What works well – so we should keep it and strengthen that part

What can be improved and how?

The question about "The teacher gave me feedback on my progress"

- Very hard with large courses
- We try with quizzes, TAs, exercise solutions

Facial Analysis

Demo of AAM explorer

 \rightarrow

51 DTU Compute, Technical University of Denmark